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Heat kernel expansion coefficient: I. An extension 
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Freiburg i Br, West Germany 

Received 14 October 1985, in final form 13 May 1986 

Abstract. We argue that it is possible to obtain the asymptotic expansion coefficients for 
an operator with torsion from the expansion coefficients for an operator without torsion. 
This is possible when both operators act on the same set of eigenfunctions in the same 
way, and therefore have the same spectrum. We calculate in four dimensions [a,(-= + 
B"V, + X ) ]  using the Schwinger-DeWitt ansatz. Then following the argument above we 
obtain [ a 2 ( - 8  - i"t, + X ) ]  where tildes denote torsion. We compare our results with a 
modest direct calculation using 'toy torsion' (totally antisymmetric and covariantly constant) 
and obtain agreement. We discuss our results and review the literature. We find no other 
algorithms for [ a , ( - 8  + dKt,  + X ) ]  consistent with the limiting case [a,(-U + B " V ,  + 
X ) ] .  There are three appendices with useful coincidence limits and curvature tensor 
relations. 

1. Introduction 

This is the first of two papers contending with the a, lzd asymptotic expansion coefficient 
of the heat kernel for an associated non-negative elliptical operator on a d-dimensional 
manifold. This coefficient is of interest because it is related to the index theorem, the 
trace and axial anomalies and  the logarithmic divergences at the first loop. With such 
special properties it is rightly called a magical coefficient (Christensen 1984). In this 
paper we show another magical property and use this to obtain relations for the ( d  = 4)  
a2 coefficient of the operator (-0 8; + [ l?"]J$, + X i ) ,  where i, j ,  are spin, o r  group, 
indices and the tildes denote that torsion is present in the derivatives. This is the most 
general second-order operator with the leading symbol given by some power of the 
metric tensor. 

In order to obtain our results, we make use of the observation that if two operators 
A I  and A2 act on eigenfunctions such that each operator has the same eigenvalue 
associated with the same eigenfunction, then these two operators have, by definition, 
the same spectrum. Therefore their asymptotic expansions must be equivalent. From 
this, we suggest that it is possible to obtain [ a 2 ( - f i 8 ; + [ B K ] J t K  +XJ)] from the 
torsion-free case [a2(-OS; +[B"];V, + X ; ) ] .  We calculate [az(-OS; +[B"];V, + XJ)] 
directly from the Schwinger-DeWitt ansatz (which as far as we know has not been 
done before). 

In 0 2, we discuss notation and d o  necessary preliminary 'groundwork'. In 0 3 we 
show how to find other second-order operators having equivalent spectra to the 
torsionful operator (-08; + [ k"]Je, + X i ) .  In  9 4, we d o  the direct calculation, using 
the Schwinger-DeWitt ansatz, of [az(-08J +[B"]JO, + X l ) ] .  We quote results for the 
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two cases where [ B", E'] # 0, [ B", XI # 0, etc, and where these commutation relations 
are zero. Then, using these results, we find [ a2( -6 8; + [ l?]l$w + X l ) ]  for both arbitrary 
and totally antisymmetric torsion. 

In § 5 we compare our results with a modest direct calculation of [a2(-f18J+ Xl)] 
for a Riemann flat manifold with 'toy torsion' which is totally antisymmetric and  
covariantly constant, and  obtain agreement. 

Finally, in 3 6, we discuss our results, review the literature, and  point to areas of 
future investigation. Among other things, we find that other results for [ a 2 ( - 6 8 J +  
[k]]l$, + X ] l ) ]  d o  not, in the limit of zero torsion, give [a2(-Oi3)+[B"]fV, + X ] l ) ] .  

2. Notation and preliminaries 

The notation used here follows, as much as possible, that of Misner et a1 (1973) and 
Barth and Christensen (1983). Objects with a tilde denote torsion. Throughout, we 
assume a compact cani fo ld  without boundary and that given the metric gap the 
covariant derivative V, is metric compatible: 

Q x g a p = O = g a p ; K .  (2.1) 

Notice the shorthand notation here is a colon above a comma for covariant derivative 
with torsion. It is easily shown from (2.1) that: 

FKap = {rap +$( T~~~ - T",, - T ~ ~ ~ ) )  (2.2) 

where Yap  is the Christoffel symbol, or, as we often refer to it below, the symmetric 
connection, and Tap, is the torsion tensor with the properties - - 

T ~ ~ *  = T~~~~~ = rap - r x p a )  (2.3) 

with brackets denoting antisymmetrisation: 

Trap," = tc Tap" - Tpu") .  

Defining the contorsion tensor: 

(2.4) 

KapK = f (  TapK - T",p - T'pu) (2.5) 

equation (2.2) is now written as 

f K u p  = wLup + Ka,") 

where the contorsion tensor has the symmetry 

(2.6) 

K U @ K  = - K K p O  ' 

Ea,, ,  = {Fapc ,"  - F a p , , ,  + F p p , F L l p K  - rPpKrapr) 

(2.7) 

The Riemann curvature tensor is defined in the usual way: 
I I -  

(2.8) 

and has the symmetries 
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However, because the connection is no longer symmetric d,,,, is no longer symmetric 
under interchange of the index pairs ap and K E .  The Ricci tensor and Riemann scalar 
are obtained in the usual way: - - - -  - 

Rap = RUC," R = R," = R,,"'. (2.10) 

The Ricci tensor is also no longer symmetric. 

becomes 
When torsion is present, the various identities are altered. The Bianchi identity 

(2.11) 

The Ricci identity (an extra term arises when the covariant derivative is invariant under 
some other group transformation-this is discussed later) for some tensor A, , is 

= { T K / A a  P.P+AP p f T U P Y E + .  . .+A,  P&P,E) .  (2.12) 

Additional identities and their contractions can be found in appendix 2. Naturally 
deleting the torsion terms, and taking off the tildes in these identities, one regains the 
identities for Riemannian manifolds. 

Using the Christoffel symbol r one can also define the torsionless covariant 
derivative which from (2.1), (2.6) and (2.7) is easily shown to be also metric compatible. 
This torsionless covariant derivative is denoted with the usual semicolon. Using (2.6) 
it is possible to relate the two derivatives e, and V, to obtain the following relation 
where A", is some arbitrary tensor: 

A",,, ={Aa, , ,  - K,,'A", + K",,A',}. (2.13) 

This is easily extended to tensors of any rank. Similarly, the torsionful and torsionless 
Riemann curvature tensors and their contractions can also be related using (2.6) and 
(2.8). The result is 

( 2 . 1 4 ~ )  

(2.146) 

Other expressions for the Ricci tensor and Riemann scalar as well as the various 
identities can all be found in appendix 2. It is also possible to write (2.14) in terms 
of the torsion tensor itself, rather than the contorsion tensor as is done here. This 
results in longer expressions which are given in Barth and Christensen (1983). 

When acting on a spinor, the covariant derivatives, if they are to remain invariant 
under the associated spin group, must be altered by the introduction of a spin connection 
where here i and j are spin, or group indices, so that the Ricci identity is changed: 

(2 .15)  

where [ Y,,]j  is the group curvature constructed in the usual way. See also DeWitt 
(1965) and Goldthorpe (1980). 

A final notational point: throughout, the coincidence limit of an expression, lim.x.-xr 
will always be given by brackets [ 3 of the expression as in Christensen (1976) and 
Synge (1960). 
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3. The Schwinger-DeWitt proper time method 

The Schwinger-DeWitt proper time method is, by now, well known (Barvinsky and  
Vilkovisky 1985, DeWitt 1965, 1975). However, some important relations for elliptical 
operators and heat kernels are the following. Given the elliptical operator A on a 
compact manifold of dimension d, with spectral decomposition { A , ,  &} of eigenvalues 
and eigenvectors forming a complete orthonormal system such that 

Ad, = A d ,  (3.1) 

K (x, x', s )  = e-'A' 

then there exists a heat kernel 

(3.2) 

solving the heat equation: 

which has the asymptotic expansion for s + 0': 
cs 

Tr K ( x ,  x', s )  - 1 a l ( x ,  X' )S"-" '~  
I = O  

(3.3) 

(3.4) 

where p = O(A). When A = ( - 0 6 ;  + [ B"]iV, + Xf) the expansion coefficients (3.4) and  
the heat equation (3.3) can be solved using the Schwinger-DeWitt ansatz: 

W x ,  x', s )  (3.5) K(x, s )  = (4Tis)'-'/2)d e - ( l / ~ 1 5 ~ T ~ x , ~  

where 

and a(x ,  x') is the geodetic interval (DeWitt 1965, Synge 1960). Often the Van 
Vleck-Morette determinant factor appears in (3.5), but this is unnecessary as it can 
be absorbed into the coefficients (3.6) ( I  thank S M Christensen for pointing this out 
to me in a private conversation). 

In d dimensions, it is possible to show that the a ( I l 2 ) d  coefficient of (3.4) has the 
property: 

r 
(3.7) 

where n is the number of zero eigenvalues and  m is the number of non-zero eigenvalues 
satisfying (3.1) (Christensen and Duff 1979, Hawking 1977). In addition to (3.7) other 
interesting relationships for this coefficient are the trace anomaly 

(3.9) 

where A and B refer to the (A ,  B )  representation of the Lorentz group (see Christensen 
and  Duff (1979) for details). It is also related to the index theorem. Finally, the 
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logarithmic diverges at the first loop level due to closed loops in the gravitational 
background field are 

(3.10) 

(see e.g. Christensen and Duff (1979)). In all of the above it is also possible to generalise 
to operators A,,, where i, j and k stand for some combination of indices. However, 
as the case without these extra indices can be considered without loss of generality 
we will not consider their unnecessary complication. 

The most general second-order differential operator with the leading symbol given 
by the metric tensor is the torsion operator 

2 A + 2 B  AL"'= ( n  -d)Y' i ( - l )  { a , i / ~ ) d ( A ,  B ) - U ( i , 2 ) d ( R  A ) }  

A = (4 + E M $ ,  + X )  (3.11) 

where the tensor l? is a first-order object (e.g. = T",'), and X is some second-order 
object. In what follows the X piece is unimportant, and for now we discard it. When 
acting on a scalar field 4 this operator (3.11) gives, using (2.6): 

A4 = { - g U p 4 , , ,  + ( g u P r K c x p  + gapKupK + EK)4,,}. 
which has the properties: 

(3.12) 

Now we define a new connection 

g a V K , p  = (gupr,,, +gcrfiK,,K + E , )  ( 3 . 1 3 ~ )  

= g u p ( r K , ,  + KoaK)  (3.136) 

where the new tensor K,,. will turn out to be a new contorsion tensor. The other 
necessary property is that the associated covariant derivative 6: is metric compatible: 
6:,,gup = 0. This holds if and only if the tensor K,,, has the antisymmetry property: 
K,,, = - K,,, . Notice that this is exactly what is true of the usual contorsion tensor 
of (2.7). To determine K,,, completely, we use this antisymmetry property together 
with (3.13) to obtain 

KO,, = {K, , ,  + k , k  - ; g , p k  + A,,, 1 (3.14) 

where the tensor A,,, has the properties 

gaPA,,, = 0 A,,, = -AK,, .  (3.15) 

To determine A,,, consider the special case where t",, = rKap which happens when 
EK = -K' I( . Then from (3.13) one has 

K,,, = 0 = {K, , ,  - ! g , , K A  + fg,pKEEa + A,,, 1 (3.16) 

which gives 

A,,, = {-&, +&&EK -+&,KEFa} (3.17) 

which determines A,,,. Notice that A,,, satisfies all the necessary properties (3.15) 
as it should. The full form for K,,, then is simply 

(3.18) 

The primed covariant derivative is now completely determined (and metric compatible) 
so that (3.11) becomes (with discarded X term) 

(-0 + lw,)(b = -04. (3.19) 
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Defining a new tensor E" as follows: 

E" = (6" + K' ," )  (3.20) 

we also have, from (3.13), (3.18) and (3.19), the relation 

(-6 + i K e K ) +  = (-0 + B " V , ) +  = -04. (3.21) 

Following the same procedure it is possible to build a double primed derivative such 
that 

rKaP = (P,, + K,,"). (3.22) 

The relationships between the various contorsion and torsion tensors are then simply 

(3  -23 a ) 

(3.236) 

(3.23 c )  

Equation (3.21) can now be extended to give - I -  

( - O + B K V K ) ~ = ( - O + E " V K ) + = - U ~  =-U+. (3.24) 

Although from (3.24) it is clear that the prime and double prime operators act on 
scalars in the same way, their contorsion tensors are different and the 'decomposition' 
of their connections (3.13b) and (3.22) respectively are different. However both of 
these new derivatives V and have the very same properties of the usual torsionful 
derivatives. That means all of the identities and relations given in 0 2 for torsion are 
satisfied by the prime and double prime derivatives as well. Similarly this is also true 
for the construction of the Riemann curvature tensor and its contractions. Some 
relations are given explicitly in appendix 2. 

Due to the relationships (3.24) these operators will have equivalent spectral 
decompositions solving the eigenvalue equation (3 .1) .  Thus the number of zero and 
non-zero modes will be the same for these operators, and therefore the a~1/2)d coefficients 
associated with these operators (3.24) will be equivalent, though simply written in 
terms of different objects. For example, the a, coefficient for the torsion operator 
(leftmost) in (3.24) will be in terms of the fourth-order invariants given in Christensen 
(1980) whereas for the torsionless operator of (3.24) it will be in terms of those 
torsionless objects built from the Riemann tensor, its contractions and derivatives. I t  
is then possible to convert one a, coefficient into the other by simply rewriting the 
various torsionless objects in terms of those with torsion, using relation (3.19) and 
those in appendix 2. 

What is to be gained by all of this? The direct calculation of the a, coefficient (we 
are assuming four dimensions for now) using (3.5) and (3.6) is very hard to do in the 
torsion case. This is largely due to the significant number of fourth-order invariants 
possible when torsion is introduced. In the torsionless case, there are relatively far 
fewer fourth-order invariants. This, together with the fact that the various identities 
(such as the Ricci) have a much simpler form, results in an easier calculation which 
can be carried out faster and with better accuracy, and can later be converted into an 
expression for the torsion case. We shall use this property in the next section to obtain 
results for the operator (3.11). 
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A final point is that, although we have focused on the a ( l l 2 ) d  coefficient with its 
special properties, because the spectra of the operators (3.24) are all the same this 
suggests that their entire asymptotic expansions are equivalent. One expects therefore 
a similar procedure of rewriting torsionless asymptotic coefficients in terms of torsionful 
invariants to obtain the torsionful asymptotic coefficients to also hold. In the next 
section (which takes place in four dimensions) this will be borne out for the a ,  coefficient 
(as well as the a2 coefficient which is to be our main focus) and also the a, coefficient. 
Thus, at least for these first coefficients, it seems our expectations for the asymptotic 
expansion coefficients other than the coefficient are true. Having said this we 
move on to the next section where we shall focus exclusively on the a(1,2)d coefficient. 

4. The calculation 

We now specialise to four dimensions and calculate the a2 coefficient for the operator 
given in (3.1 1). One could consider calculating this directly. Substituting the Schwin- 
ger-DeWitt ansatz (3.5) into the heat equation (3.3) one obtains recursion relations 
and an indicial equation allowing one to solve for, in principle, all of the asymptotic 
expansion coefficients (3.4). This 'straightforward' method has been used by Gold- 
thorpe (1980) and Nieh and Yan (1982). As we have mentioned before, it has the 
disadvantage that when torsion is involved this direct calculation strains normal humans 
to their limits. For this reason another method was suggested in § 3. This method we 
now follow through here. 

Due to the relation (3.24) we calculate a, for the operator 

( - O + B " V , + X )  (4.1) 

instead of for the operator (3.11). Operator (4.1) has no torsion and so it is much 
easier to find a2 for this operator. We do this in a 'straightforward' way, substituting 
(3.5) into (3.3) obtaining the indicial equation 

{-;nu,+ (+;*ao;, +~(+; ,*a , - fB"o; ,a , }  = 0 (4.2) 

and recursion relations 

{ - f n a , + , + ( l +  l )uf+ ,+(+;Ku,+l~ ,  +f(+;KKul+I  -a,;," - f B K ( + ; , a l + l + B K a f ; r + X a f } = O .  

Note that the group indices i a n d j  are left implicit in equations (4.2) and (4.3). This 
can be done without loss of generality. Taking derivatives of (4.2) and (4.3), and using 
the coincidence limits of a ( x ,  x') and the geodetic interval given in appendix 1, one 
easily obtains the necessary expressions: 

(4.3) 

[a , ; * ]=  9% (4.4) 

[ a , ; , , ] = - ' { Y  2 -2R 3 ,E -1B 2 I ; c  -'B 2 - 3 ~ , ~ , - i ~ F ~ , }  I (4.5) 

[ a ~ ; , ~ ~ ]  = -4{  Y,,B" +fB"Y, ,  + Y,,;" - f R ; ,  -aRB, -aB,B";, 

-$B,B"B, - - : W B , ; ~  - ~ B " B , ; ,  -:B"B,B, -$B"B,B, 

(4.6) -- :Be;",  -B, ;" ,  - f B " ; , B ,  - f B , ; , B "  - f B " ; , B " }  
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[ U , , , ~ , ~ ] = - ~ { - ~ Y ~ ~ Y " '  -2Y,,B",'- Y,,B"B'+ B"Y,,B'+ B " Y , , ; ' + ~ [ u ; ~ * ~ ~ ~ ~ ]  

- R;,B" -bR2-$RB,;" -iRB,B" -2B";,', -:B";'R,, 

- B";,"B, -2B":,'B, -$B"B'R,, - B";,B';, -jB",,B"B, 

-2B"[~o; , ' , ] -  B","B,,, - B",'B,,, 

- 4 B";' B, B, - 5 B K : P  B, B ~ }  (4.7) 

(4.8) [al l  = {[ao;,"I - B"[ao . , l -X}  

1 2 [ a 2 1  = { 2 [ a 0 ; K K ? ' 1  - 2 B L [ a 0 ; K E F 1  - 2 B * [ a O ; F E N  1 - [ U ; K K C F l [ a l l  + 2 B K ; K [ a 1 1  

- B"B,[a,]  - 6 X [ ~ 1 ]  - 4 B " ; ' [ ~ o ; , ~ ]  + 2 B N B E [ ~ 0 , p K ]  - ~ X [ U " ; , ~ ]  

- B",,'B, -2X,," -2X;"B,  + B"B',,B, +2B"X , ,  + B"XB,}. (4.9) 
It is important to remember that due to the existence of the group indices, the generalised 
Ricci identity (2 .15)  must be used. Then using (4.4) through (4.9) one obtains 

[ U , ]  = {:R + +B,," -$B"B, - x }  (4.10) 

as well as 

1 8 0 [ ~ , ( - 0  + B"V,  + X ) ]  

= { R  ap*e Rap"' -R,pRaP+~R2+6R,,"+90X2-30XR-30X~,"+15YK,Y"' 

-?B"B'Y,, +~Y, ,B"B'  + ~ B " Y , , B ~ + ~ o B " , ' Y , , +  I~Y , ,B" ; '  

+YB"Y,,; '+ 15RB,;" - yRB"B ,+  15B"B,X+ 15XB"B, 

+ 15B"XB, -30B",,X -6OXB";. +30B"X;,  -3OX,,B" 

+ i 5 ~ " , , ' ,  - ? B ~ ; ~ ~ B ~  -YB"B, .~,  + I~B"; , ,B '  - 1 5 ~ ' ~ ~ ; ~ ~  + ? B * , , B ~ , ~  
1 5  - B ", B, 

+ B B ' B, ; p  + 9 B y  B E B, , - 

- 9 B E B "; ,B ,  + 9 B I( B, B' B, + $ B"B B" B, + $ B" B' B, B, }. (4.1 1 )  

Notice that depending on how the tensors [ B"] ;  and X j  are defined, they may or  may 
not commute with themselves, or each other. The expressions (4.10) and (4.11) are 
the general expressions which assume that all such commutations are not zero. If 
[B" ,  B']-=O, [ B " ,  X l = O ,  [B, ,  Yapl-=O, [ X ,  Yap]-=O then (3 .15 )  becomes 

180[a2] = { R u P K E R a p K E  - R a p R U P  +$R'+6R9," + 9 0 X 2 - 3 0 X R  -3OX,," + 15 Y,,Y"' 

+45B":'YK, +9B"Y,,," + 15RB,," - Y R B " B ,  + 15B";,', 

- 15 B"B, , F E  + 4 B";,  B f i e  - 9 B",'B,,, - 9 B",'B, 

-90B",,X + 45 B"B,X + yB"B,B'B,}. 

- y B I ;  E B, ,, - B ';, B B, - y B ", B, B, - 9 B B, B, 

B " B, ; E B + 9 B IC B, , , B E - 9 B E  B, B K ;  , 

- ?B"B,B'., 

(4.12) 
Using the following relations: 

( 4 . 1 3 ~ )  

(4.13 b )  

( 4 . 1 3 ~ )  
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BKiFE ={B,,',+ K , f P j p B p + 2 K I E P B p j e +  KCPPKpE*BA + K f / K K P A B A  + K F / B K i p )  

B";,', ={B",,',+ K","i.'B,+2Ka,K;'B,i,+ KO1,*BI;EF 

(4.13d) 

+ KFFKBLI,, ,  + K ' , " K " , P , , B p + K F , K K ~ , P B , i p }  (4.13e) 

along with appendix 2 ,  it is possible to convert (4.11) to obtain [a,(-fi + g K v K  + X ) ] .  
The equations (4.13) allow one to rewrite all of the B-dependent terms in (4.11). The 
relations in appendix 2 such as R,,,, = (R,, , ,  + allow one to rewrite all of the 
terms dependent on the Riemann tensor and its contractions in terms of the torsionful 
curvature tensor and the contorsion ( M a p K C  depends on the contorsion as given in 
(A2.7)) .  When this is done, the result is 

- 

18O[a2(-fi + B K f 7 , + X ) ]  

= { Ikupvs12 - id,, 1' + $ E 2  + 6d,,K + 9 0 X 2  - 3 0 X k  - 30X,," + 15 Y,, Y K f  

+ 2 k  aPraMapra - 2dopM,p + 5 k M  + I Mupva 1' - I Map 1' + z M 2  + 6 M i  K K  

+ 6 K  FEKdi ,  + 6 K  E c K M ; ,  - 30XM - 30K p E K X i ,  +yB"B'Y, ,  

+yY,,B"B'+yB"Y,,B'  +30BKi'Y, ,  +30KKEPB,YKF+ 15Y,,B",' 

+ 1 5  Y ~ ~ K * ~ ~ B ~  +$B"Y,,,' + ~ B ~ K , ~ ~ Y ~ ~  + ~ B ~ K ~ , P Y , ~  + i 5 k ~ ~ , ,  
+ 15kK',"B,+ 15MBK, ,  + 15MK',"B, - y k B " B ,  - y M B " B ,  

+ 15B"B,X+ 15XB"B,+15BKXB, -30B" , ,X -30K ' , "BKX-60XBKiK 

-60Kf , "XB,+30BKX, ,  -30X~,B"+15B";,F,+15K","i~'B, 

+30KaaKi 'B,; ,  +15K","BKi', + 1 5 K " , " B ' ~ , , ~ 1 5 K ~ , " K E p P ; , B P  

+ 15Ka,"KEFPBpiK -yB",, 'B,  - 15K"'PBp,,B, - y K E , p B K ; P B ,  

-7B"B,, ' ,  15 - 15K"EPB,Bp;F - y K F F P B K B K i p  

+ 15B",,,BE+ 15KaaK,,B,B'+ 15K","B,,,B' - 15B'BK,,, 

- 15K",";,B'B, - 15K","BFB,., +yB" , ,B ' , ,  +yK" , 'BKiKB,  

+?Ka , E B,B",, +yKE,KK",PB,Bp - yBKi 'B , : ,  - y K K E P B K j E B P  

- ~ K ~ ~ ~ B ~ B , ~ ~  - ~ K ~ ~ ~ K , , ~ B , B ,  - ~ B " , ~ B , , ,  -?K E K P ~ K i F ~ P  

-~ K E U P B K i F B P  - 9 K  KfPBpBEiK -yK"P"K,oFBCBp 

-- B ,,B'B, -yK","B,B'B, -$B",'B,B, -$2BK,FB,B, + y B " B ' B  

+ 9 K * E p ~ K  B, B, + 9 B" B B,: I - B" B,, B - $ K K E P ~ ,  B,B, + y B" B,; , B 

+ $ K E K p ~ K  B,B, - 4 B' B, B" ,  - 4 K B' B, B, - y B'B", , B, 

15 

15 I( 

I;.= 

- 9 K Q m K  B' B, B, + $ B" B, B' B, + B" B E B, B, + B B' B, B, 1 (4.14) 

where B" = ( 6 ,  + K '?,) and the tensors MopYs,  M a p  and M are as in appendix 2. 
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5. Comparison with a direct calculation 

It would be nice to check the work of the previous section with a direct calculation. 
For reasons already mentioned, the full direct calculation of (4.13) is a formidable 
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task likely to involve human error. We shall discuss previous work taking the direct 
aporoach in the next section. For now we propose the modest direct calculation of 
[ a,( -fi + X ) ] ,  using a severely restricted torsion tensor and Riemann curvature which 
will make the calculation possible. 

as in theorem 2.6 and proposition 
2.12 in ch 10 of Kobayashi and Nomizu (1969).  It then follows that there exists a 
non-zero torsion tensor which is totally antisymmetric and covariantly constant and a 
curvature tensor such that R,,,, = O  (we thank M Bordermann and  M Forger for 
bringing this example to our attention). Using these restrictions there is the important 
identity which follows immediately from the cyclic identity (A2.17):  

( 5 . 1 )  
As an  aside, we mention that it is possible to show that in general a totally 

antisymmetric and covariantly constant torsion tensor is not zero. In three dimensions 
any totally antisymmetric tensor must be proportional to the Levi-Civita: 

Consider a semisimple Lie group and connection 

.. 

T 06, T"',T P U  "TPVE = 2TPPKTPYyTPPETPYE.  

T[ijk] - Eijk ( 5 . 2 )  
where here i, j and k = 1, 2 ,  3 .  Then, given some constant of proportionality A with 
the appropriate units, it follows from the covariant constancy of the Levi-Civita that 

( 5 . 3 )  
3 3 

?IT[ykl = A Q ~ E ~ , ~  = 0 
3 

where ?I  is the torsionful three-dimensional covariant derivative. Thus the tensor T,jk 
has all of the desired properties and  is also non-zero by construction. It is easy to see 
that T , j k  is part of Tap,  and therefore we have shown what we set out to show. 

Moving on, using the restrictions on d,,,, and TapK,  and ( 5 . 1 ) ,  equation (4.13) 
becomes simply 

180[a2(  -0 + X ) ]  = {;( K , , , K U P K ) 2  - 30K,,,KoP"X 

- 3 0 f i x  + 9 0 x 2 +  15 Y,,Y""}. 

{ - tna ,  + ui "aoi , +;vi ,,ao} = o 

{ - $ n a , + ,  + ( I  + I ) U / + ~  + uiKuI+,  ;I( + ~ U ~ , ~ U ~ + ,  - 

(5 .4 )  
We now obtain this directly. Using the ansatz ( 3 . 5 )  as we did in § 4, we obtain for the 
operator (-0 + X )  the indicia1 equation 

( 5 . 5 )  

(5 .6)  

and recursion relations 

+ X U / }  = o 
(ignoring the indices i, j and  k for now). By taking derivatives of these two equations, 
using the generalised Ricci identity ( 2 . 1 5 )  and coincidence limits from appendix 3, we 
obtain 

[ % , I  = o  ( 5 . 7 a )  

(5.7b) 
(5 .7c)  

[ ao;*LEf] = {+ YP"YPY +B([ain,l(][ai ,P,])2}.  ( 5 . 7 d )  

[ a , ]  = { ~ K , , , K " ~ "  - x }  (5.8) 
and equation (5 .4 )  for the a ,  coefficient of (-0 + X ) .  Thus (5 .4)  has been confirmed 
by direct calculation. 

I L  
[ a o ; a p I  = {-dui, , p 1 - f Y o p }  

[aiuP" Haoi ,pK 1 = bl[Ui ap ,  l [ ~ ; " p F  11' 

Then after a little more work one obtains 
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6.  Discussion 

Equations (4.10) and (4.11) are somewhat curious because not all of the possible 
invariants that could appear in them d o  appear. In (4.10) the following invariants d o  
not appear: 

B"R+ B"B'R,, B",'R", Y,,,'B". (6.1) 

Similarly, in (4.1 1)  the 'missing' invariants are 

B"R, ,  B"X," B"B'R,, B",'R,, B <,"J B",'B,B,. (6.2) 

This is, as far as we know, the first time that this has been 'observed'. The expectation 
that all possible invariants that can appear do appear in the asymptotic expansion 
coefficients has been used, for example, to argue that ordinary pure gravity theories 
are hopelessly non-renormalisable. At every loop one expects every possible invariant 
to appear which, due to dimensional reasons, can never be absorbed by adjustment 
of the coupling constants into the action. One is forced to add an  infinite number of 
counterterms to the action. Thus it is natural to ask whether the Schwinger-DeWitt 
ansatz works for the operator (-0 + E " V ,  + X ) .  There are second-order operators for 
which the ansatz does not work such as (6.3) below (as well as any operator of order 
2 4 ) .  

The expression for [ az (  -0 + X ) ]  obtained via the ansatz is known to agree with 
other calculational methods (DeWitt 1965, 1975, Gilkey 1975). As this is true, the 
ansatz must also work for the operator (-6 - K',"$, + X )  (in fact using (2.13) it is 
easy to transform the indicia1 equation and recursion relations for the one operator 
into those of the other). When this is true, then it must also be the case that the ansatz 
works for the generalisation of this operator: (-fi + + X ) .  Simply taking the 
limiting case of when the torsion goes to zero in [ a 2 ( - f i  + + X ) ]  then gives 
[ a 2 ( - 0  + B " V ,  + X ) ] .  So it seems that the ansatz is applicable to the operators we 
considered in § 4. 

There has been other work on finding [ az (  -6 + gKvK + X ) ] .  Goldthorpe (1980) 
and Nieh and Yan (1982) have attempted to perform the direct calculation using the 
Schwinger-DeWitt ansatz. Goldthorpe reduces the complexity by requiring that the 
torsion be totally antisymmetric, rather than completely arbitrary. I f  we take the zero 
torsion limit of Goldthorpe's expression for [ az (  -fi + gKvK + X ) ]  we find that his 
results d o  not agree with either our (4.10) or (4.11). One instance is that the invariant 
EK.KfF  is missing in his expression. It is possible to trace this error through to his 
equation (A5) which is not consistent with his (3.7). There are other discrepancies 
with our results as well in this limiting case. We also note that Goldthorpe's results 
are not in their most simple form. Many of his invariants are related to each other 
via various identities. 

Nieh and Yan give a direct calculation for the general case of [a,(-fi + g K v K  + X ) ]  
with arbitrary torsion. They are unable to give their results in closed form leaving 
many significant substitutions to the reader. Indeed, in some ways their calculation is 
left incomplete. For this reason it is rather hard to work with their results. However, 
taking the limit of zero torsion, we obtain discrepancies with our results for [az(-O + 
B " V , + X ) ]  given in (4.10) and  (4.11). 

There is also the work of Obukhov (1982, 1983). He also suggests that there might 
be a relationship between a,_coefficients for various operators. As we have, he tried 
to use this to find [a , ( -6  + B"?, + X ) ]  from non-torsion cases. He correctly claims 
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that it is possible to obtain [a,(-fi + BK6, + X ) ]  from [a,(-[? + B " V ,  + X ) ] ,  but then 
goes on to claim that [ a 2 ( - 0  + B"V, + X ) ]  can, in the same fashion, be obtained from 
[ a 2 ( - O + X ) ] .  He is not alone in this. It is quite commonly suggested that this is 
possible by simply introducing another connection and derivative (see e.g. Barvinsky 
and Vilkovisky (1985)). What most seem to fail to realise however is that not every 
derivative is metric compatible. If one demands metric compatibility then the new 
derivatives turn out to have torsion in them. This is what we showed in Q 3 and this 
is what equation (3.24) and the primed derivatives are all about. Clearly if  one is 
trying to solve for the torsion case to begin with then introducing these primed 
derivatives is of no help. If one is willing to live with non-metric compatible derivatives 
one is perhaps able to rewrite the operator (-0 + B"V, + X )  in the form ( -AuPV,V,  + 
X ) .  However the a,  coefficient for operators of this form is not known, even when 
AUP equals the metric for non-metric compatible derivatives. In short we d o  believe 
it is possible to obtain [az(-O + B " V ,  + X ) ]  from [a,(-O + X ) ]  in general. Having 
said all of this, we note that Obukhov's expressions d o  not take the correct limiting 
form of (4.11) when the torsion goes to zero in [ a , ( - f i + B " ~ , + X ) ]  (he does not 
seem to deal with the more general case of when [ B", B']  # 0 etc, which has a limiting 
case given by (4.10)). Lastly, in the various proofs and  arguments given by Obukhov 
(1982, 1983), he never mentions that it is due to the fact that A ,  and A, act on the 
same set of eigenfunctions in the same way, and  thus have the same spectrum, that 
their asymptotic expansions are equivalent. In fact as far as the a,  coefficient is 
concerned one really only needs to show that the number of zero and non-zero modes 
for these operators are the same. We consider these to be the key points allowing the 
a, coefficients of A ,  and A, (and the rest of the asymptotic expansion coefficients) to 
be related to each other. 

We would like to make an  additional comment on expressions for the a2 coefficient 
for operators of the form 

(6.3) 
This is the most general elliptical operator possible with up  to two derivatives. 
Christensen (1982) suggests a method for obtaining the a, coefficient for such an 
operator. As it is presented however, this method can only work for AUP such that it 
is of zeroth order. It should be noted that there is no general expression for a, when 
AUP is of arbitrary order. This is because when A"' is such that its order is greater 
than four, the a, coefficient must be, on dimensional grounds, completely independent 
of it, and thus it cannot even appear in the expression for a 2 .  

We have shown that when calculating a, coefficients it is sometimes possible to 
reduce the operator in question to a simpler operator for which the a, coefficient is 
already known. In 9 3 we also showed that it is possible to d o  away with the middle 
term in the operator (-0 + B"V, + X )  by introducing the primed derivatives and the 
operator ( - f l + X )  (or ( - O + X ) ) .  Is this possible in general? That is, given the 
general operator of order n = 2k with the leading symbol given by some power of the 
metric 

A,  ={(-l)'OO" +A'"I (6.4) 
does there always exist an  operator 

A n  = { ( -1)"k + A'"$ o , ' - 2 ) o o 1  . . . om,r-*+. . .+A"IOUI +A} (6.5) 
such that they act on eigenfunctions in the same way? Although we have shown this 
to be true for the case n = 2  this does not seem possible in general. 

{-A'"')V,VP + B"V, + C } .  

~ ) V u l  . . . Vu,,-l +, , .+ A U ~ V U I  + A}  



870 N H Barth 

Areas for further investigation would be to calculate anomalies using the results 
here. Preliminary attempts can be found in Obukhov (1983) and Yajima and Kimura 
(1985) but they use algorithms found in Obukhov (1983) and Nieh and Yan (1982) 
respectively for [a2(-fi  + & $ K  + X ) ]  which d o  not satisfy the limiting cases of (4.10) 
or  (4.11). The work of Yajima and Kimura (1985) also considers only the special case 
of totally antisymmetric torsion. 

It is also now possible, in principle, using the results here and in Barth and 
Christensen (1983), to do for the torsion case what Christensen and  Duff (1979) did 
for the torsionless case. This would be to catalogue the relationships between spin, 
a, coefficients, index theorems and anomalies. It then might be possible to find various 
combinations of spin fields which give rise to interesting cancellations. 

It would also be useful to investigate why certain invariants given in (6.1) and (6.2) 
d o  not appear in (4.10) or (4.11) respectively. A deeper understanding of this could 
be significant for calculating these asymptotic coefficients. We shall return to this when 
we consider higher-order operators in the second paper of this series. 

+ X ) ]  directly using a 
computer. Although, as we have suggested, the direct calculation is difficult for humans, 
a computer has obvious advantages. As our results seem to be the most consistent 
with the various limiting cases they might be useful for comparison with computer 
results. The calculation is of such significant complexity that it might also be a good 
test for a symbolic manipulation program. 

Lastly, it would be useful to try to calculate [ az (  -6 + 
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Appendix 1. Coincidence limits of the geodetic interval 

Taking derivatives of the identity 

u ( x ,  x') = i u ( x ,  x ' ) , p ( x ,  x ' ) , K  (Al . l )  
and then, after use of the Ricci identity, the coincidence limit as x ' + x  (denoted by 
brackets), one obtains the relations 

[o(x, x ' ) ]  = 0 (A1.2) 

[ ~ , , 1 = 0  (A1.3) 
[ ( + . K P  1 = g K F  (A1.4) 

[ u . u p K l  = 0 (A1.5) 

[ ~ . u p w l . l  = - I {R  3 mgpv + R u u p g , )  (A1.6a) 

[ u , u p n K l  = [ a , K K u p 1  = - k p  (A1.66) 

[ ' , U K " p l  = f R U p  ( A l . 6 ~ )  

I[ (+.*pPu 11' = f I RupPY I 2  = f R u p w J  (A1.6d) 
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Appendix 2. Riemann, connection and torsion relations 

Given 
.. - -  

(-0 + B"O, )4  = (-U + B " V , ) 4  = -04 = -04  (A2.1) 

then the Riemann tensor Rap," is built out of symmetric connections TKeP and d,,,, 
Rap@" and kappy are built out of the antisymmetric connections F K a p ,  rKap and rKap 

(A2.2) 

(A2.3) 

(A2.4) 

( A 2 . 5 ~ )  

(A2.56) 

( A 2 . 6 ~ )  

(A2.66) 

( A 2 . 7 ~ )  

(A2.76) 

(A2.8a) 

(A2.8b) 

( A 2 . 9 ~ )  

(A2.96) 

(A2.1 Oa ) 

(A2. lob)  

( A 2 . 1 1 ~ )  

(A2.11b) 
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where 

M o p  5 M n , p *  

R = { R  + 2 K F , " , ,  + K f p K K K C I U  - K K F , K F a K }  

= { R + M }  

where 

(A2.12a ) 

(A2.12 b ) 

(A2.13 a )  

Note that the last two terms in the above expression d o  not have primes above the 
first contorsion tensors. This is as it should be. 

Repfir = { k p p v  + M a p p i  } (A2.13 b )  

Rap = { ~ , p + K , ~ a , P + K , p ~ , , + K E p Y K K p , - K C p ~ K , f ,  

+ K ' p K K F U a  - Kp'"K,,,} 

R a p  5 { i n ,  + M a p  1 
( A 2 . 1 4 ~ )  

(A2.14b) 

where 

Mnp = MOKPK 

R={R+2KK, ' , .+KE,~K, , ,  - R ear K X F a  + 2 K , , , K F K a }  

R = {i + M} 
(A2.15 a )  

(A2.15 b )  

where 
fi = MK,* = f i K F K + .  

The identities for the torsionful curvature tensor (2.8) follow. The Bianchi identity 

(A2.16a ) 

(A2.16b) 

(A2 .16~)  

and contractions are 

{ R a @ f i v , K  + k p v h - , f i  + f?aOKp,v} = { - - ~ f i , ~ k p x p  - ~ u K ~ k p f i p  - ~ x p ~ k p v p }  

{ k o , K  - L,, + Lpw,F} = {- ~~~~k~~~ + T ~ ~ ~ L ~ ~  + T ~ ~ ~ ~ ~ ~ I  

{ E ,  I( - 2EEK, '} = { T"P"d,p,, + 2 TKnp&}. 

The cyclic identity and its contractions are 

{ ~ a p f i " + ~ ~ f i " p + ~ n " p p } = { - T p p n , ~ -  T~.,,~ - T . ~ , , ~ +  T ~ ~ K T , , ,  

+ Tfiv"Ttpa + T v p " T K p a 1  (A2.17 a ) 

{ ~ , , - ~ p , > = { - T , K K , ~ - T K , K , , - T p , , . " + T ~ , K T K ' F } .  (A2.17b) 

The Ricci identity is 

[f'<, f',lAa p = { Y A ,  

the torsion equal to zero in equations (A2.16)-(A2.18) and takes off the tildes. 

+ TKFpAa p . p  + A ,  PkPrF +. . . + A ,  pkppKF}. (A2.18) 

To obtain the usual identities for the torsionless curvature tensor one simply sets 
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For the primed (double primed) identities, simply replace the tildes in (A2.16)- 
(A2.18) with primes (double primes), put primes (double primes) above all the torsion 
tensors and substitute derivatives with primed (double primed) derivatives. 

The various contorsion tensors and torsion tensors are related by 

‘,OK = { K C C P K  - 1 ( A 2 . 1 9 ~  ) 

fopK = I Tap* - Topr} (A2.19 b ) 

Top* = KO,,. (A2 .19~)  

Appendix 3. Toy torsion manifold 

(A3.1) 

(A3.2) 

(A3.3) 

Using the cyclic identity for torsion (2.15) and the restrictions above it follows 
immediately that 

I TopKTp,“ 1’ = 2 Top“ TPYKTCCpETpyF. (A3.4) 

Using the derivatives of the geodetic interval (A1.2) through (A1.7), replacing in all 
derivatives, ‘;’ with ‘i’ and using the Ricci identity for derivatives with torsion we obtain 

[ a ]  = 0 (A3.5) 

[ a . K l  = (A3.6) 

(A3.7) 

(A3.8) 
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